TABLE 1

Genetic Epidemiology and Core Public Health Functions in the

Continuum from Genes to Public Health

Step	Description of activities	Disease/gene examples
GENETIC TECHNOLOGY HUMAN GENOME PROJEC	Gene mapping and linkage T studies in high risk families	50,000-100,000 genes such as BRCA1 in breast cancer
V ASSESSMENT	GENETIC EPIDEMIOLOGY	ApoE E4 allele and Alzheimer's disease
V POLICY DEVELOPMENT	When and how genetic tests are to be applied in public health programs	Screening for various genes
V ASSURANCE	Development of public health genetic programs, evaluation of prevention effectiveness, quality assurance	

TABLE 2

Genetic Epidemiology and Assessment of the Role of Genetic Factors in Disease

Ası	pects	Examples		
<u>I.</u>	Population studies			
Α.	Prevalence of susceptibility alleles in various populations	Studies of the frequency of BRCA1 mutations in different ethnic groups		
В.	Determinants of mutations in various populations	Studies of risk factors for chromosomal anomalies such as Down syndrome		
C.	Association between genetic traits and diseases	Studies of ApoE-E4 allele in Alzheimer's disease in the population		
<u>II</u>	. Family studies			
Α.	Familial aggregation of diseases	Recurrence risks of birth defects after an an affected pregnancy		
В.	Causes of familial aggregation of disease	Studies of genetic and environmental factors in the recurrence of various diseases		
C.	Establishing genetic modes of inheritance	Segregation and linkage analysis in families		

TABLE 3

Gene-Environment Interaction Analysis in a Case-Control Study

Exposure	Suscep- tibility genotype	Cases	Controls	Odds Ratio
(1=presen	t, 0=absent)			
0	0	A ₀₀	B ₀₀	$OR_{00} = 1.0$
0	1	A ₀₁	B ₀₁	$OR_{01} = A_{01}B_{00}/A_{00}B_{01}$
1	0	A_{10}	B ₁₀	$OR_{10} = A_{10}B_{00}/A_{00}B_{10}$
1	1	A_{11}	B ₁₁	$OR_{11} = A_{11}B_{00}/A_{00}B_{11}$

Case-only odds ratio $OR_{ca}=A_{11}A_{00}/A_{10}A_{01}=(OR_{11}/OR_{10}OR_{01})OR_{co}$ Where $OR_{co}=B_{11}B_{00}/B_{10}B_{01}$ (control-only odds ratio)

TABLE 4

Case-Control Analysis of the Interaction Between Maternal
Cigarette Smoking, Transforming Growth Factor Alpha
Polymorphism, and the risk for cleft palate. Adapted from Hwang
et al. (11)

Smoking P	TaqI olymorphism	Cases	Controls	Odds Ratio	95% C.I.
_	_	36	167	1.0	Referent
-	+	7	34	1.0	0.3-2.4
+	-	13	69	0.9	0.4-1.8
+	+	13	11	5.5	2.1-14.6

Crude odds ratios are presented. Odds ratio based on a case-only study is 5.1 (95% C.I. 1.5-18.5) (13 * 36)/(13 * 7)

TABLE 5
Characteristics of Nontraditional Case-Only Studies

Feature (Case-Only	Case-Parental Control	Affected Relative-pair
Study Subjects	Cases	Cases and their parents	Second case in family, proband, and parents
'Controls'	None	Expected genotype distribution based on parental genotypes	Expected distribution of alleles with Mendelian transmission
Assessment	Departure from multiplicative relation between exposure and genotype	Association between genotype and disease Also departure from multipli-	Linkage between locus and disease Also departure from multipli-
		cative relation	cative relation
Assumptions	s Independence between genotype and exposure	Mendelian tranmission	Mendelian transmission
Strengths & limitations	Simple. Cannot assess effects of exposure or genotype. Linkage disequilibrium	Requires one or both parents. Cannot assess exposure effects. Linkage disequilibrium	Need families with 2 or more cases. Cannot assess exposure Cannot assess specific

TABLE 6

Gene-Environment Interaction Analysis in the Context of a CaseParental Control Study: Analysis of Nontransmitted Alleles

Susceptibility genotype

Exposure: Absent

Cases

		Present	Absent
Parental non-transmitted all	-	T_0	U_0
	Absent	V_0	W_0
Odds Ratio (amo unexposed)		1	U ₀ /V ₀

Exposure: Present

Cases

			Present	Absent	
Parental	Present		\mathtt{T}_1	\mathtt{U}_1	
non-trans-					

mitted alleles

	Absent	V_1	W_1
Odds		1	U_1/V_1
Ratio (amo	ong		
exposed)			

TABLE 7

Gene-Environment Interaction Analysis in the Context of an Affected Sib-Pair Study

Alleles with	Unexposed case	Exposed case	Expected	Odds Ratio (unexposed)	Odds Ratio (exposed)
0	A ₀₀	A ₀₁	0.25	1.0	1.0
1	A ₁₀	A ₁₁	0.50	$A_{10}/2A_{00}$	$A_{11}/2A_{01}$
2	A_{20}	A_{21}	0.25	A_{20}/A_{00}	A_{21}/A_{01}

TABLE 8

Incorporating a Familial Analysis of Reconstructed Cohorts into a Case-Control Study

Disease in a Relative	Disease in Index Persons		
	Case	Control	
Yes	A_1	A_0	
No	B_1	B_0	
Total	N_1	N_0	

Total of case relatives is N_1 and control relatives $N_0.$ Disease proportion in case relatives A_1/N_1 Disease proportion in control relatives A_0/N_0 Risk ratio $(A_1/N_1)/(A_0/N_0)$

TABLE 9
Linkage analysis in an Epidemiologic Study Design

Alleles ibd w probands	Cohort study		Case-control study		
probanas	Disease Risk	Risk ratio	Recurrent cases	Controls	Odds ratio
0	R_0	1.0	A_0	B_0	1.0
1	R_1	RR_1	A_1	B_1	$\mathrm{A_1B_0/A_0B_1}$
2	R_2	RR_2	A_2	B_2	A_2B_0/A_0B_2